Site icon MiltonMarketing.com – Bernard Aybout's Blog

What is an Autonomous Car?

What is an Autonomous Car?

What is an Autonomous Car?

What is an Autonomous Car?

First, the Definition of an autonomous car

An autonomous car is a vehicle capable of sensing its environment and operating without human involvement. A human passenger is not required to take control of the vehicle at any time, nor is a human passenger required to be present in the vehicle at all. An autonomous car can go anywhere a traditional car goes and do everything that an experienced human driver does.

The Society of Automotive Engineers (SAE) currently defines 6 levels of driving automation ranging from Level 0 (fully manual) to Level 5 (fully autonomous). These levels have been adopted by the U.S. Department of Transportation.

What is an Autonomous Car?

Autonomous vs. Automated vs. Self-Driving: What’s the Difference?

The SAE uses the term automated instead of autonomous. One reason is that the word autonomy has implications beyond the electromechanical. A fully autonomous car would be self-aware and capable of making its own choices. For example, you say “drive me to work” but the car decides to take you to the beach instead. A fully automated car, however, would follow orders and then drive itself.

The term self-driving is often used interchangeably with autonomous. However, it’s a slightly different thing. A self-driving car can drive itself in some or even all situations, but a human passenger must always be present and ready to take control. Self-driving cars would fall under Level 3 (conditional driving automation) or Level 4 (high driving automation). They are subject to geofencing, unlike a fully autonomous Level 5 car that could go anywhere.

Autonomous cars rely on sensors, actuators, complex algorithms, machine learning systems, and powerful processors to execute software.

Autonomous cars create and maintain a map of their surroundings based on a variety of sensors situated in different parts of the vehicle. Radar sensors monitor the position of nearby vehicles. Video cameras detect traffic lights, read road signs, track other vehicles, and look for pedestrians. Lidar (light detection and ranging) sensors bounce pulses of light off the car’s surroundings to measure distances, detect road edges, and identify lane markings. Ultrasonic sensors in the wheels detect curbs and other vehicles when parking.

Sophisticated software then processes all this sensory input, plots a path, and sends instructions to the car’s actuators, which control acceleration, braking, and steering. Hard-coded rules, obstacle avoidance algorithms, predictive modeling, and object recognition help the software follow traffic rules and navigate obstacles.


What Are The Challenges With Autonomous Cars?

Fully autonomous (Level 5) cars are undergoing testing in several pockets of the world, but none are yet available to the general public. We’re still years away from that. The challenges range from the technological and legislative to the environmental and philosophical. Here are just some of the unknowns.

Lidar and Radar- Autonomous Cars?

Lidar is expensive and is still trying to strike the right balance between range and resolution. If multiple autonomous cars were to drive on the same road, would their lidar signals interfere with one another? And if multiple radio frequencies are available, will the frequency range be enough to support mass production of autonomous cars?

Weather Conditions – Autonomous Cars?

What happens when an autonomous car drives in heavy precipitation? If there’s a layer of snow on the road, lane dividers disappear. How will the cameras and sensors track lane markings if the markings are obscured by water, oil, ice, or debris?

Traffic Conditions and Laws – Autonomous Cars?

Will autonomous cars have trouble in tunnels or on bridges? How will they do in bumper-to-bumper traffic? Will autonomous cars be relegated to a specific lane? Will they be granted carpool lane access? And what about the fleet of legacy cars still sharing the roadways for the next 20 or 30 years?

State vs. Federal Regulation – Autonomous Cars?

The regulatory process in the U.S. has recently shifted from federal guidance to state-by-state mandates for autonomous cars. Some states have even proposed a per-mile tax on autonomous vehicles to prevent the rise of “zombie cars” driving around without passengers. Lawmakers have also written bills proposing that all autonomous cars must be zero-emission vehicles and have a panic button installed. But are the laws going to be different from state to state? Will you be able to cross state lines with an autonomous car?

Accident Liability – Autonomous Cars?

Who is liable for accidents caused by an autonomous car? The manufacturer? The human passenger? The latest blueprints suggest that a fully autonomous Level 5 car will not have a dashboard or a steering wheel, so a human passenger would not even have the option to take control of the vehicle in an emergency.

Artificial vs. Emotional Intelligence – Autonomous Cars?

Human drivers rely on subtle cues and non-verbal communication—like making eye contact with pedestrians or reading the facial expressions and body language of other drivers—to make split-second judgment calls and predict behaviors. Will autonomous cars be able to replicate this connection? Will they have the same life-saving instincts as human drivers?

The scenarios for convenience and quality-of-life improvements are limitless. The elderly and the physically disabled would have independence. If your kids were at summer camp and forgot their bathing suits and toothbrushes, the car could bring them the missing items. You could even send your dog to a veterinary appointment.

But the real promise of autonomous cars is the potential for dramatically lowering CO2 emissions. In a recent study, experts identified three trends that, if adopted concurrently, would unleash the full potential of autonomous cars: vehicle automation, vehicle electrification, and ridesharing. By 2050, these “three revolutions in urban transportation” could:

  • Reduce traffic congestion (30% fewer vehicles on the road)
  • Cut transportation costs by 40% (in terms of vehicles, fuel, and infrastructure)
  • Improve walkability and livability
  • Free up parking lots for other uses (schools, parks, community centers)
  • Reduce urban CO2 emissions by 80% worldwide

Today’s cars have 100+ million lines of code. Tomorrow’s autonomous cars will have more than 300 million lines of code, so cybersecurity is a growing concern.

Autonomous car Capabilities wish list:

  • Object and facial recognition
  • Night vision
  • Adaptive cruise control
  • Universal/Globally followed standard on autonomous cars communicating with one another in regards to human safety. (locations, speeds, trajectories, etc…)
  • Keyless – Biometrics security: eye scan, fingerprint, and audio signature detection.
  • Flying cars
  • Overlay windshield as computer screen for vehicle with adjustable transparency. (watch movies whilst driving, or do work while watching the road.)

Related Posts:

What is SEO?

Cybersecurity Analyst (CSA+) Exam Study Guide

The auto industries race to the electric and autonomous car

Hacking Autonomous Vehicles: Is This Why We Don’t Have Self-Driving Cars Yet?

Tesla Autopilot stopped for a rabbit on the road caught on video, owner claims

Tesla’s software lead is so big it should worry other automakers, AI expert says

Nissan follows Tesla’s lead and drops LIDAR from autonomous cars
What does your car know about you? We hacked a Chevy to find out

Magna’s new MAX4 self-driving platform offers autonomy up to Level 4

Exit mobile version